A Distance-Based Over-Sampling Method for Learning from Imbalanced Data Sets
نویسندگان
چکیده
Many real-world domains present the problem of imbalanced data sets, where examples of one classes significantly outnumber examples of other classes. This makes learning difficult, as learning algorithms based on optimizing accuracy over all training examples will tend to classify all examples as belonging to the majority class. We introduce a method to deal with this problem by means of creating a balanced data set, which allows to improve the performance of classifiers. Our method over-samples the minority class, using a randomized weighted distance scheme to generate synthetic examples in the neighborhood of each minority
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملBorderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning
In recent years, mining with imbalanced data sets receives more and more attentions in both theoretical and practical aspects. This paper introduces the importance of imbalanced data sets and their broad application domains in data mining, and then summarizes the evaluation metrics and the existing methods to evaluate and solve the imbalance problem. Synthetic minority oversampling technique (S...
متن کاملAn Effective Method for Imbalanced Time Series Classification: Hybrid Sampling
Most traditional supervised classification learning algorithms are ineffective for highly imbalanced time series classification, which has received considerably less attention than imbalanced data problems in data mining and machine learning research. Bagging is one of the most effective ensemble learning methods, yet it has drawbacks on highly imbalanced data. Sampling methods are considered t...
متن کاملA Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines
The class imbalance problem in classification has been recognized as a significant research problem in recent years and a number of methods have been introduced to improve classification results. Rebalancing class distributions (such as over-sampling or under-sampling of learning datasets) has been popular due to its ease of implementation and relatively good performance. For the Support Vector...
متن کامل